# Separation Requirements and Recommendations

GMO Study Committee December 13, 2005 ICN Room, State Capitol



- •Gregory Lamka, Quality Supply Technology Manager at Pioneer Hi-Bred
- •Native Iowan from Fredericksburg in Chickasaw County
- •Attended ISU: BA in Agronomy, MS Plant Pathology, PhD Plant Pathology
- •Worked in seed industry entire working career
- •Pertinent jobs to this topic: managed a parent seed facility, soybean plant breeder, managed a world wide quality assurance program for a parent corn program, and currently have responsibilities for a corn seed field inspection program that documents isolation distances, silking dates, pollen shed dates, and detasseling information
- •Current past president of the Iowa Seed Association

# **Topics**

- Agencies involved in seed certification and standards
- Cross pollinated crop seed production concepts and standards (corn)
- Self pollinated crop seed production concepts and standards (soybeans)
- IP grain production considerations
- Conclusions



- •I would like to acknowledge that this information has come from various sources:
  - •Dr. Michael Lauer, Pioneer Hi-Bred—part of study with ISU and Dr. Westgate
  - •Identity Preserved Systems by Dennis Strayer
  - •Iowa Seed Certification Requirements published by ICIA

#### Federal Seed Act

• Seed producers need to achieve a minimum of 95% genetic purity or the label must list the other seed mixtures in the product.



- •In order to call a seed product a hybrid or variety it must be 95% that product.
- •If the product is not 95% pure it would be labeled as a blend

# Association of Official Seed Certifying Agencies

- Third party organization
- Involved in establishing minimum genetic standards and uniform certification procedures
- Iowa Crop Improvement is a member
- Most member organizations have programs for IP grain as well as seed certification



- •AOSCA was originated in 1919
- •So seed companies have been doing IP (seed) crops for a very long time
- •Today seed companies are producing non-GM and GM seed in an environment where non-GM and GM commercial grain is being produced.



- •A quick review to show you what principles are applied in a seed corn production field
- Corn is a monoecious plant—separate male and female flowers on the same plant
- •Two inbreds are planted
  - •A male inbred supplies the pollen
  - •A female inbred (detasseled) is cross pollinated and produces the seed crop



- •The majority of the corn pollen drops out of the air very quick so male rows can not be very far from the female rows.
- •If there is not a high concentration of male pollen in the seed production field the seed set will be reduced and yields will be limited.

# 

- •Example of a detasseled seed corn production field
- •Hawaii seed production field

#### Pollen in corn seed production

Inbreeding decreases pollen production



But we still succeed in managing for purity

Isolation is key

From Lauer and Westgate, 1997



- •Inbreds vary greatly in their ability to produce pollen but generally produce considerably less pollen than a hybrid plant.
- •Male inbreds typically are ≤20% of the plants in a seed production field
- •In an IP grain production field all the plants have tassels therefore the pollen production will 10X that found in a seed field.

## Bottom Line - Corn pollen

- · Blows in the wind but most remains in or near field
  - Heavy, settles fast
- Abundant pollen shed some will be transported over considerable distance
- · Pollen typically dies within hours of shed
- Germinates within minutes of landing on receptive silk

Within field pollen creates a dense pollen

- Provides high coverage of the silks in the field. Most of the grain will be fertilized with pollen from the same field
  - · This protects field from adventitious pollen



#### Bottom Line - Corn silks

- · Receptive as long as they are actively growing
- Lose receptivity as they age ~ receptive for about 6 days
- Provide nutrients for pollen tube growth
- Silk emergence occurs over several days for a plant longer for a field



# Iowa Seed Certification Requirements—Hybrid Corn

- Plant eligible seed stock
- Field inspections
  - Field Standards
    - Isolation
    - · Detasseling or pollen control
    - Roguing



- •Seed companies enter into production agreements with seed producers
- Seed companies provide the seed stock for planting
- •Seed producers must provide land that has the proper crop rotation and isolation
- •The seed producer will plant the seed with a clean planter
- •The seed company will usually contract the detasseling and roguing

Certification Isolation Requirements: 1-20 Acres

| Trequirements.1 20 Mercs   |                   |
|----------------------------|-------------------|
| Dist. from other corn-feet | Min. borders rows |
| 410                        | 0                 |
| 390                        | 1                 |
| 370                        | 2                 |
| 350                        | 3                 |
| 330                        | 4                 |
|                            |                   |
| 105                        | 15                |
| 85                         | 16                |



- •Note that as the distance is reduced more border rows are needed
- •Parent seed (inbred) production requires 660 feet of isolation
- •Corn of a different color or texture must be isolate by 660
- •Sorghum may require isolations of 1,320 feet from other sorghum or shatter cane (some companies may require more, up to 2 miles)
- •Sunflowers may require long distances from other sunflowers and wild sunflowers as well because of bees moving pollen (up to 2 miles)

#### All fields are displayed relative to one another.



- •We often grow seed in adjacent fields on multiple farms to increase total field size and correct pollen concentration.
- •Growers are responsible for asking neighbors about their planting intentions so proper isolation and border rows can be planned for.
- •For example in California multiple seed companies map entire production areas (valleys) and isolate sunflowers by distance and time.



- $\bullet$ SB = Green
- •Seed Corn = Yellow
- •Every field has a detailed map with all surrounding fields and crops identified.
- •The growers ability to meet isolation requirements dictates what seed or IP crops are reasonable for him to produce.

15

# Field Inspections

- A minimum of three field inspections must be done by representatives of the certifying agency.
- When the previous crop was corn, at least one additional (Final Inspection) shall be done to verify the field is sufficiently free of volunteer plants from the previous crop.



\_ •ASOCA will do third party inspections of seed or IP production fields.

# Roguing

- Definite off-type plants must be completely destroyed (plants showing hybrid vigor or different plant type from parental lines)
- A field is disqualified for certification if:
  - ->0.1% (1 per 1,000) off type plants shed pollen when >5% receptive silks are present
  - ->0.1% (1 per 1,000) off type plants are present at Final Inspection



•Note AP can come from within the field depending on crop rotation or impure seed stock.



- •Soybean flowers primarily self pollinate.
- •Flowers are very small-about the size of an eraser on a pencil.

#### Soybeans

- Land Requirements
  - The previous crop can not be soybeans unless it was the same variety and passed field inspection for varietal purity
- · Field Standards
  - Isolation distances
    - · 40 feet when the adjoining field was broadcasted planted
    - 5 feet when the adjoining field was planted with a drill or row planter
  - Roguing
    - Off-type plants or other varieties in excess of the field standards must be removed from the field prior to the certification inspection



- •Growers must have proper land rotation and isolation for the seed crop.
- •Planters, combines, augers, wagons, bins, etc. must all be kernel cleaned by the grower to prevent seed mixtures.

# Soybeans-Cert. Requirements

- Field Inspection
  - The field will be inspected by a representative of the certification agency during the time when genetic purity and identity can be determined



•AOSCA can provide third party inspections for seed or IP contracts.

# Soybean Field Standards

| Class      | Other varieties & off-<br>types |
|------------|---------------------------------|
| Foundation | 0.1% (1:1,000)                  |
| Registered | 0.2% (1:500)                    |
| Certified  | 0.5% (1:200)                    |

PIONEER.

<sup>•</sup>Different purity standards are required depending on the class of seed planted and the class being produced.



- •As previously mentioned the ICIA has IP inspection services for producers.
- •www.agron.iastate.edu/icia

# IP Grower Responsibilities

- Land selection
  - Previous crop grown
  - Isolation distances
- Planting
- Growing
- Harvesting
- Storage
- Delivery
- · Grower records



- •These are some of the considerations a grower needs to think about when entering an IP contract or market.
- •The response to these items will determine which IP crops are best suited to a particular farm.
- •The grower is paid for his ability to supply or meet these responsibilities.

# Strategies to reduce adventitious presence in IP grain

- · Select large fields
- Increase isolation distances
- Remove 12-16 border rows
- · Clean planting equipment
- · Plant high quality seed
- · Avoid corn following corn
- Clean harvest, handling, hauling and storage equipment
- Maintain good records

From Burris, 2000



- Corn strategies
- •The ability of the grower to meet these criteria are the reason they are being paid a premium.
- •Not all farms can expect to raise all crops for seed or IP grain.

# IP corn grain - summary

- Dense pollen cloud in the production field
  - High seed set
  - Blocks adventitious pollination
- Flowering synchrony
- Good purity possible but exact isolation distance will vary based on several parameters



- •100% of the plants in an IP production field have tassels and shed more pollen than inbred plants.
- •Hybrid IP production fields therefore have 10X the pollen of a seed production field.
- •Field isolation distances depend on kernel color, endosperm type, field size, etc.

#### Conclusions

- Seed is the original IP crop
- Growers and seed companies are responsible for the isolation and other practices needed to meet genetic standards
- Seed production and commercial grain crops have co-existed for decades
- GMO's and IP programs can co-exist



•Growers are paid to have the proper isolation—it is not the responsibility of adjoining growers.



•The seed industry is successfully supplying non-GM and GM crops to our customers today.



•Questions?